Paper: \qquad Maths

Month Test: \qquad February

Theme/Unit: $1,2,3,5,7,9,10,11$

Objective:

Roll No: \qquad

Signature: \qquad
class: \qquad

Total Marks: \qquad 20 Obt. Marks: \qquad Grand Total: \qquad Time: \qquad Section: \qquad
Q. No. 1: Encircle the correct option:
/20

1. Resolution of $\frac{x^{2}+6}{(x+2)(x+3)}$ into partial fraction is the form of:
a. $\frac{A}{x+2}+\frac{B}{x+3}$
b. $\frac{A}{x+2}+\frac{B x+c}{x+3}$
c. $\frac{A x+B}{x+2}+\frac{c}{x+3}$
d. $1+\frac{A}{x+2}+\frac{B}{x+3}$
2. Range of $\operatorname{Sin}^{-1} x$ is:
a. $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$
b. $0 \leq x \leq \pi$
c. $\frac{-\pi}{2}<x<\frac{\pi}{2}$
d. $0<x<\pi$
3. The angle which have the same initial and terminal sides are called:
a. Acute
c. Right
b. Astute
d. Coterminal
4. A die is thrown once then probability to get an odd number is:
a. $1 / 2$
b. $\frac{1}{6}$
d. $\frac{2}{3}$
C. $\frac{5}{6}$
5. No of words that can be formed from the letter of the word PLANE using all letters at a time is equal to:
a. 5
b. 4 !
c. 5 !
d. 4
6. If $\left|\begin{array}{ccc}4 & 0 & 0 \\ 2 & x+7 & 0 \\ 1 & 6 & 12\end{array}\right|=0$ then x equals to:
a. -7
b. 7
c. 48
d. 6
7. The way of drawing conclusion from limited no of observations is called:
a. Deduction
c. Disjunction
b. Conjunction
d. Induction
8. $\forall z \in C, z+\bar{z}$ is:
a. Complex number
c. Real number
b. Rational number
d. Irrational number
9. $\forall a, b \in R \Rightarrow a b \in R$ is called:
a. Closure law
c. Associative law
b. Commutative law
d. Distributive law
10. $A=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 0\end{array}\right]$ then $A B$ is:
a. $\left[\begin{array}{cc}10 & 0 \\ -5 & 0\end{array}\right]$
b. $\left[\begin{array}{c}10 \\ 0\end{array}\right]$
c. $\left[\begin{array}{ll}10 & 0\end{array}\right]$
d. $\left[\begin{array}{c}10 \\ -5\end{array}\right]$
11. If $A=\{0\}$ then $P(A)$ is:
a. $\{0\}$
b. $\{0, \Phi\}$
c. $\{\Phi,\{0\}\}$
d. $\{\{0\},\{\Phi\}\}$
12. The set $\{0,1\}$ is closed under:
a. Addition
c. Subtraction
b. Multiplication
d. Division
13. If n is a prime no. then \sqrt{n} is:
a. Prime no.
c. Natural no.
b. Rational no.
d. Irrational no.
14. In order A is $m x n$ and k is any scalar then order of $K A$ is:
a. $m \times n$
b. $\mathrm{km} \times \mathrm{kn}$
c. $\mathrm{kn} \times \mathrm{km}$
d. $\mathrm{n} \times \mathrm{m}$
15. 0 ! Is equal to:
a. 3
b. 2
c. 1
d. 0
16. If each entry of one row or column in a square matrix A is 0 then:
a. $|A| \neq 0$
b. $|A|=0$
c. $|A|=1$
d. $|A|=-1$
17. If E is an event then:
a. $-1 \leq P(E) \leq 1$
b. $0 \leq P(E) \leq 1$
c. $-1 \leq P(E) \leq 0$
d. $0<P(E)<1$
18. If $\sec \theta<0$ and $\sin \theta<0$, then the terminal arm of an angle lies in:
a. $1^{\text {st }}$ quadrant
b. $2^{\text {nd }}$ quadrant
c. $3^{\text {rd }}$ quadrant
d. $4^{\text {th }}$ quadrant
19. $\quad \operatorname{Cosec}(\pi+\theta)$ equals to
a. $-\sec \theta$
b. $\operatorname{Sec} \theta$
c. $\operatorname{Cosec} \theta$
d. $-\operatorname{cosec} \theta$
20. Range of $\sin x$ is:
a. $[-3,3]$
d. $[-1,1]$

Paper: \qquad Maths February Month Test \qquad
Theme/Unit: \qquad
Subjective:

Roll No: \qquad
b. $[-2,2]$
c. $[-1,0]$

Part - I

Q. No. 1: Write Short answers: /18

1) Does the set $\{1,-1\}$ possess closure property w.r.t Multiplication?
2) Factorize $3 x^{2}+3 y^{2}$
3) Write power set of $A=\{9,11\}$
4) Write converse and contrapositive of $q \rightarrow p$
5) Define function
6) In group $(z,+)$ write inverse of 2 and -3.
7) If $A=\left[\begin{array}{cc}i & 0 \\ 1 & -i\end{array}\right]$, show that $A^{4}=I_{2}$
8) Show that $\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5\end{array}\right|=0$
9) Show $\left[\begin{array}{ccc}0 & -4 & 1 \\ 4 & 0 & -3 \\ -1 & 3 & 0\end{array}\right]$ is skew matrix.
Q. No. 2: Short answers:
10) Resolve the fraction $\frac{1}{x^{2}-1}$ into partial fraction.
11) Define proper rational fraction.
12) Convert into proper fraction $\frac{3 x^{2}-1}{x-2}$
13) Evaluate: $\frac{9!}{2!(9-2)!}$
14) Convert in factorial form $n(n-1)(n-2) \ldots \ldots . .(n-r+1)$
15) Find the value of $n,{ }^{n} P_{4}:{ }^{n-1} P_{3}=9: 1$
16) In how many ways can 4 keys be arranged on a circular key ring?
17) Prove that ${ }^{n} C_{r}={ }^{n} C_{n-r}$
Q. No. 3: Write Short Answers:
18) Convert $54-45$ into radian.
19) Verify $2 \sin 45^{\circ}+1 / 2 \operatorname{cosec} 450=\frac{3}{\sqrt{2}}$
20) Find ' x ' if $\tan ^{2} 45^{\circ}-\cos ^{2} 60=x \sin 45^{\circ} \cos 45^{\circ} \tan 60^{\circ}$
21) Find the value of $\tan \left(1110^{\circ}\right)$
22) Prove that $\tan \left(45^{\circ}+A\right) \tan (45-A)=1$
23) Express product as sums or difference $\cos \left(2 x+30^{\circ}\right) \cos \left(2 x-30^{\circ}\right)$
24) Find the period of $\cos \frac{x}{6}$
25) Find the period of $\tan 4 x$

Part - II

Q. 4: (a). If, A, B, C are any Non-empty three sets then show that:
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b). Find the rank of matrix: $\left[\begin{array}{ccc}1 & -4 & -7 \\ 2 & -5 & 1 \\ 1 & -2 & 3 \\ 3 & -7 & 4\end{array}\right]$
Q. 5: (a). Resolve the given into partial fraction: $\frac{2 x+1}{(x-1)(x+2)(x+3)}$
(b). Prove that ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
Q. 6: (a). Prove that $\operatorname{Sin} 10^{\circ} \operatorname{Sin} 30^{\circ} \operatorname{Sin} 50^{\circ} \operatorname{Sin} 70^{\circ}=\frac{1}{16}$
(b). if $\alpha+\beta+\gamma=180$ show that:
$\cot \alpha \cot \beta+\cot \beta \cot \gamma+\cot \gamma \cot \alpha=1$

