1 Subject, Class, Annual (2020) Roll no: ______, ID:____, ID:____,

Paper: <u>Chemistry</u>		Total Marks: <u>17</u>		
Month Test: <u>February</u>	State State	Obt. Marks:		
Theme/Unit: <u>1st half</u>	* KPS *	Grand Total:85		
	الله بل عل			
Objective/Subjective:	ID:	Time:		
Roll No:	class: <u>1st Year</u>	Section:		
Q. No. 1: Encircle the correct option: /17				
1. The number of moles of	-			
a. 0.25		c. 1.0		
b. 0.50		d. 1.50		
2. Quantum number value				
a. n=2, l=1		c. n=1, l=0		
b. n=1, l=2		d. n=2, l=0		
•	t which the solute moves	in paper chromatography depends		
on:		c. Temperature		
a. size of paper b. R _f value of solute		d. Size of tank		
4. The mass of one mole of				
a. 1.008 mg		c. 0.184 mg		
b. 0.55 mg		d. 1.673mg		
5. 27g of all will react with		-		
a. 8g		c. 32g		
b. 16g		d. 24g		
6. Number of molecules in		•		
a. $\frac{6.02}{22.4} \times 10^{23}$		C. $\frac{18}{22.4} \times 10^{23}$		
		d. 55.6 x 6.02 x 10^{23}		
b. $\frac{12.04}{22.4} \times 10^{23}$				
7. Splitting of spectral lines	-			
a. Zeeman effect		c. Photoelectric effect		
b. Stark effect		d. Compton effect		
8. One calorie is equivalen				
a. 0.4184 J		c. 4.184 J		
b. 41.84 J		d. 418.4 J		
9. The e/m value for the po	-			
a. H_2		C_{2}		
b. He		d. N ₂		
-	me energy are called:	Dogoporato orbitale		
a. Hybrid orbitalsb. Valence orbitals		 Degenerate orbitals D – orbitals 		
	table breathing in un-pres			
a. High pressure of Co_2		c. Fatigue		
b. Low pressure of O_2		d. Low pressure of Co_2		
12. Tin has isotopes:				

/	_	-	-

a. 7	C	2. 5
b. 9	C	J. 11
	CH_4 and O_2 are mixed in c	container at 25°c. the fraction of
a. 1/9		2. 16/17
b. 1/3	C	J. 8/9
 Which of the following sport orbitals: 	pecies has unpaired elect	ron in anti-bonding molecule
a. O ₂ ⁺²	C	5. F ₂
b. O ₂ ⁻²	C	$1. N_2^{-2}$
15. In the ground state	e of atom the electron is p	present:
a. In the nucleus	•	. Nearest to nucleus
b. In 2 nd shell		d. Far from nucleus
16. The order of the ra	ate of diffusion of gases N	IH_3 , So ₂ Cl ₂ and Co ₂ is:
a. NH ₃ ,> So ₂ > Cl ₂ > Co	-	$Cl_2 > So_2 > Co_2 > NH_3$
b. $NH_3 > Co_2 > So_2 > Cl$	-	$H_1 = H_3 > Co_2 > Cl_2 > So_2$
·	ergy of Mg atom is	
		1
a. +738kjmol ⁻¹	C	1500kjmol ⁻¹
a. +738kjmol ⁻¹ Paper: <u>Chemistry</u>	(1500kjmol ⁻ ' Total Marks: <u>68</u>
-	C	-
Paper: <u>Chemistry</u>		Total Marks: <u>68</u>
Paper: <u>Chemistry</u> Month Test: <u>February</u>	ID:	Total Marks: 68 Obt. Marks:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: <u>1st half</u>	AND	Total Marks: <u>68</u> Obt. Marks: Grand Total: <u>85</u>
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: 1 st half Subjective: Roll No: b. +1450kjmol ⁻¹	ID:	Total Marks:68 Obt. Marks: Grand Total:85 Time:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit:1 st half Subjective: Roll No: b. +1450kjmol ⁻¹ c349kjmol ⁻¹	ID:	Total Marks:68 Obt. Marks: Grand Total:85 Time:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: 1 st half Subjective: Roll No: b. +1450kjmol ⁻¹	ID:	Total Marks:68 Obt. Marks: Grand Total:85 Time:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit:1 st half Subjective: Roll No: b. +1450kjmol ⁻¹ c349kjmol ⁻¹ Q. No. 2: Give Brief answers	ID: class:1 st year . /44	Total Marks:68 Obt. Marks: Grand Total:85 Time: Section:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: <u>1st half</u> Subjective: Roll No: <u></u> b. +1450kjmol ⁻¹ c349kjmol ⁻¹ Q. No. 2: Give Brief answers 1) Calculate percentage of	ID:	Total Marks:68 Obt. Marks: Grand Total:85 Time: Section:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: <u>1st half</u> Subjective: Roll No: <u></u> b. +1450kjmol ⁻¹ c349kjmol ⁻¹ Q. No. 2: Give Brief answers 1) Calculate percentage of 2) Ice floats on water. Give	ID:	Total Marks: <u>68</u> Obt. Marks:
Paper: <u>Chemistry</u> Month Test: <u>February</u> Theme/Unit: <u>1st half</u> Subjective: Roll No: <u></u> b. +1450kjmol ⁻¹ c349kjmol ⁻¹ Q. No. 2: Give Brief answers 1) Calculate percentage of	ID: class: 1^{st} year . /44 nitrogen in urea. $H_2N - G$ e reason. atom cannot be determined	Total Marks: 68 Obt. Marks: Grand Total: 85 Time:

- 5) How undesired able colour can be removed from a crude crystalline product?
- 6) Write two characteristics of plasma?
- 7) So₂ is comparatively non ideal at 273k but behave ideally at 327°C. why?
- 8) Differentiate between atomic absorption and emission spectrum.
- 9) One mg of K₂Cro₄ has thrice the number of ions than the number of formula units when ionized in H₂O. why?
- 10) Give significance of magnetic quantum number?
- 11) Name of factors influence ionization energy?
- 12) Give electronic configuration of ${}^{65}_{29}$ Cu

124

- 13) Why repeated extraction of small portion of solvent is more efficient than using a single extraction of large volume?
- 14) Give two faulty postulates of KMT.
- 15) Give postulates of Mosleley's law.
- 16) No bond in chemistry is 100% ionic. Why?
- 17) How will you prove that cathode rays travel in straight line?
- 18) Write four features of good solvent.
- 19) Calculate the mass in grams of 10^{-3} moles of H₂o.
- 20) Why Nacl and CaCl have different structure?
- 21) Why the dipole moment of Co_2 is zero but that of water is 1.85 D?
- 22) Explain the structure of NH₃ molecule in the light VSEPR theory?

Q. No. 3: Give comprehensive answer:

Q. 1: (a). Describe the moment of vapour pressure by Monometric method.

(b). Calculate the number of grams of K_2So_4 and water produced when 14g of KoH are reacted with excess of H_2So_4 ? (k =39, S=32)

Q. 2: (a). Derive the equation for the radius of the nth orbit of H_2 – atom using Bohr's model.

(b). Describe hybridization of Ethene and Ethyne molecule.

Q. 3: (a). Give postulates of Bohr's atomic model.

(b). How do you measure the heat of combustion by bomb calorimeter?