Paper: \quad Maths May

Theme/Unit: 1,2\&3(Ex \# 3.1: Q\# 10)
Objective/Subjective:

Name: \qquad
\qquad
\qquad
Month Test: \qquad _

ID: \qquad
class: \qquad

Total Marks: \qquad 48

Obj. Marks: \qquad
Grand Total: \qquad

Time: \qquad

Section: \qquad

QUESTION NO: 1

Tick the correct option from each of the following questions: $\quad(24 \times 2=48)$

1: A set that consist of an unlimited or an uncountable number of elements is called \qquad set.
a) Finite
b) Infinite
c) Equal
d) Empty

2: The \qquad set is also known as void set.
a) Equal
b) Empty
c) Equivalent
d) Finite

3: In a set $A=\{0,1,2,3, \ldots, 10\}, n(A)=$ \qquad .
a) 1
b) 5
c) 10
d) 11

4: Two \qquad sets are always equivalent.
a) Equal
b) Finite
c) Infinite
d) Supersets

5: Every set is a \qquad of itself.
a) Singleton set
b) Subset
c) Null set
d) Collection

6: Empty set is denoted by \qquad .
a) $\{0\}$
b) $\{\Phi\}$
c) $\}$
d) 0

7: Elements of a set are denoted by the symbols \qquad .
a) Φ
b) $€$
c) \neq
d) 3

8: In Roman Numeral system, the symbol is used for the value 500.
a) L
b) C
c) D
d) M

9: How many Millions are there in 1 Billion?
a) 10
b) 100
c) 1000
d) 10000

10: \qquad is the smallest whole number.
a) 0
b) 1
c) -1
d) None
11. " 11 " is greater than " 10 ", we write it as \qquad .
a) $11<10$
b) $11>10$
c) $11=10$
$11 \leq 10$

12: The Commutative law of whole number under addition is \qquad .
a) $a+b \in W$
b) $a+b=b+a$
c) $a+(b+c)=(a+b)+c$
d) None

13: Complete this : $7+\left(6+_\right)=(7+6)+4$
a) 13
b) 17
c) 10
d) 4

14: \qquad is the inverse process of division.
a) Multiplication
b) Addition
c) Subtraction
d) Factorization

15: The whole numbers ≥ 4 but <8 are \qquad .
a) $4,5,6,7$
b) $5,6,7,8$
c) $4,5,6$
d) $5,6,7$

16: $a \times(b+c)=$ \qquad .
a) $(\mathrm{a} \times \mathrm{b})+(\mathrm{b} \times \mathrm{c})$
b) $(a \times b)+(a \times c)$
c) $(a+b) \times(b+c)$
d) $(a+b) \times(a+c)$

17: The factors of 16 are:
a) $1,2,4,8,16$
b) $1,2,4,16$
c) $1,4,8,16$
d) $2,4,8,16$

18: The number greater than " 1 " have at least \qquad factors.
a) one
b) Two
c) Three
d) Four

19: A number that has more than two factors is called a \qquad number.
a) Prime
b) Even
c) Odd
d) Composite

20: The number " 1 " is \qquad .
a) Prime
b) Composite
c) both a and b
d) None of these

21: Encircle the Even number.
a) 298
b) 401
c) 303
d) 199

22: In multiplication; $11 \times 0=$
a) 11
b) 0
c) 110
d) None

23: The numbers which are ≤ 9 but >7 are \qquad .
a) 8,9
b) 9,10
c) 6,7
d) 7,8

24: If P is the subset of Q , then Q is a / an \qquad of P.
a) Subset
b) Improper subset
c) superset
c) Proper subset

Theme/Unit: 1,2\&3(Ex \# 3.1: Q\# 10)
Objective/Subjective:
ID: \qquad
Total Marks: \qquad 52 Obj. Marks: \qquad Grand Total: _100/ Time: \qquad

Name: \qquad class: \qquad
\qquad

QUESTION NO: 2

Solve all these questions carefully.

1. Write the set in descriptive form:

G= \{Sunday, Saturday $\}$
Answer:
2. Define the following:

Singleton set:

Composite number:

Subset:
3. Write the cardinality of the given sets:
(a) $\mathrm{R}=\Phi$

Answer:
(b) $\mathbf{P}=\{\mathbf{k}, \mathbf{l}, \mathrm{m}, \mathrm{n}, \mathbf{o}\}$

Answer:
4. List the elements of the following sets:
(a) Set of colors in a rainbow

Answer:
(b) Set of vowels

Answer:
5. Write the numbers in expanded form :
(a) $\mathbf{4 5 5 , 5 6 4 , 3 3 4}$

Answer:
(b) $\mathbf{5 , 8 2}, 31,68,902$

Answer:
6. Write the first seven consecutive whole numbers starting from 319 .

Answer:
7. Represent the whole numbers <5 but ≥ 1 on the number line.

Answer:
8. Find the difference between the greatest 7 -digit number and the greatest 4-digit number.

Answer:
9. Verify the associative law of addition of the given question:

46, 64, 87
Solution:
10. Divide the smallest 4 -digit number by 44.

Answer:
11. Verify the given question using the distributive law.
$16 \times(5-2)=(16 \times 5)-(16 \times 2)$
Solution:
12. Find the prime factors of the number " 22 ".

Solution:
13. Find the LCM of $\mathbf{1 2 , 2 0}$ and 24 using prime factorisation method.

Solution:
14. Find if the following numbers are divisible by 11 or not.
(a) 4567
(b) 676929

