Paper: ____Maths__

Month Test: May

Theme/Unit: _____

Subjective:

Name:

NPS **

class: 9th

Total Marks: ____60_

Obt. Marks: _____

Grand Total: 75

T

ııme: _____

Section:

Part- I

Q. NO. 2: Answer the following questions:

- 1) Define matrix.
- 2) Which satisfy the matrix equation:

$$\begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix}$$

- 3) Find the negative of matrix $\begin{bmatrix} 1 & -5 \\ 2 & 3 \end{bmatrix}$
- 4) Find the product [-3 0] $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$
- 5) Find the determinant of $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$
- 6) Find multiplicative inverse (if exist) $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$

Q. No. 3:

- 1) Represent the number on number line $-2\frac{3}{4}$
- 2) Express recurring decimals in form of $\frac{p}{q}$ (a). $0.\overline{5}$
- 3) Simplify radical expressions $5\sqrt{\frac{3}{32}}$
- 4) Use law of exponent if $(2x^5y^{-4})(-8x^{-3}y^2)$
- 5) Evaluate 2²⁷
- 6) Simplify in form of a+bi (-7+3i)(-3+2i)

Q. No. 4:

- 1) Define scientific notation also give one example.
- 2) If $\log 31.09 = 1.4926$ find the value of $\log 0.003109$
- 3) Find the value of x from statement $log_{81}9 = x$
- 4) Express $\log x 2 \log x + 3\log(x+1) \log(x^2-1)$ as a single logarithm.
- 5) Calculate log₃2 x log₂81
- 6) If log 2=0.3010, log3=0.4771, log5=0.6990 find the value of log30.

Part - II

Q. No. 5: (a) If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$ then A(Adj A) = (Adj A) A = (det A)I /4

(b). Use cramer's rule to solve system of equations:

$$3x - y = -1$$
 $4x + 2y = 8$

Q. No. 6: (a). Solve the equation for real x and y (2 - 3i)(x + yi) = 4 + i/4

(b). Simplify: $\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}}}$

/4

Q. No, 7: (a) Prove $\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$

/4

(b). Evaluate: (i). $\log_{2\frac{1}{128}}$

(ii). $10^P = 40$

/4