Paper: \qquad Mathematics

ID: \qquad

Total Marks: \qquad 75

Obt. Marks: \qquad Grand Total: \qquad
Time: \qquad

Q\#1: Circle the correct option.
1- A relationship between two quantities of the same kind is called:
a- Proportion
b- ratio
c- Consequent
d- None

2 - In ratio $\mathrm{a}: \mathrm{b}, \mathrm{b}$ is called:
a- antecedent
b- consequent
c- unit
d- element

3- Which term shows the relation as " y is directly proportional to x ".
a- $\mathrm{y} \propto \frac{1}{x}$
$\mathrm{b}-\mathrm{x} \propto \frac{1}{y}$
$\mathrm{c}-\mathrm{x} \propto y$
d- $\mathrm{y} \propto x$

4- In a proportion $\mathrm{a}: \mathrm{b}:: \mathrm{c}: \mathrm{d}, \mathrm{b}$ and c are called:
a- means
b- extremes
c- fourth proportional
d- None

5- If three quantities a, b and c are related as $\mathrm{a}: \mathrm{b}:: \mathrm{b}: \mathrm{c}$, then ' c ' is called:
a- Third proportional
c- mean proportional
b- fourth proportional
d- continued proportional
b- $\frac{4}{3}$
d- 12
7- If $\frac{u}{v}=\frac{v}{w}=k$, then
a- $u=w k^{2}$
$\mathrm{b}-\mathrm{u}=\mathrm{vk} \mathrm{k}^{2}$
c- $u=w^{2} k$
$d-u=v^{2} k$
8- The third proportional of x^{2} and y^{2} is:
a- $\frac{y^{2}}{x^{2}}$
b- $x^{2} y^{2}$
c- $\frac{y^{4}}{x^{2}}$
d- $\frac{y^{2}}{x^{4}}$

9- If $\mathrm{a}: \mathrm{b}=\mathrm{x}: \mathrm{y}$, then invertendo property is:
a- $\frac{a}{x}=\frac{b}{y}$
b- $\frac{a}{a-b}=\frac{x}{x-y}$
c- $\frac{a+b}{b}=\frac{x+y}{y}$
d- $\frac{b}{a}=\frac{y}{x}$

10-The function of the form $f(x)=\frac{N(x)}{D(x)}$, with $D(x) \neq 0$, where $N(x)$ and $D(x)$ are polynomials in x is called:
a- an identity
b- an equation
c- a fraction
d- None
$11-\left(5 x^{2}+4\right)^{2}=25 x^{2}+40 x+16$ is:
a- A linear equation
b- an equation
c- an identity
d- none of these
$12-\frac{3 x-1}{x^{2}-1}$ is
a- A proper fraction $b-$ an improper fraction
c- an identity
d- a constant term
13-Partial fraction of $\frac{x+2}{(x+1)\left(x^{2}+2\right)}$ are of the form
a- $\frac{A}{x+1}+\frac{B}{\left(x^{2}+2\right)}$
b- $\frac{A}{x+1}+\frac{B x+C}{\left(x^{2}+2\right)}$
c- $\frac{A x+B}{x+1}+\frac{C}{\left(x^{2}+2\right)}$
d- $\frac{A}{x+1}+\frac{B x}{\left(x^{2}+2\right)}$

14-Partial fraction of $\frac{x^{2}+1}{(x+1)(x-1)}$ are of the form
b- $\frac{A}{x+1}+\frac{B}{x-1}$
b- $1+\frac{A}{x+1}+\frac{B x+C}{x-1}$
c- $1+\frac{A}{x+1}+\frac{B}{x-1}$
d- $\frac{A x+B}{x+1}+\frac{C}{x+1}$

15-Resolving the fraction into partial fraction is also known as:
a- An identity
c- resultant fraction
b- zeros' method
d - none of these

Q\#1: Solve the following Questions.
(i) Define Proportion.
(ii) If $3(4 x-5 y)=2 x-7 y$, find the ratio $x: y$.
(iii) Find x if $\frac{3 x-1}{7}: \frac{3}{5}:: \frac{2 x}{3}: \frac{7}{5}$.
(iv) Define Inverse variation and find the relation A varies directly as the square of r and $A=\frac{1782}{7} \mathrm{~cm}^{2}$, when $r=9 \mathrm{~cm}$.
(v) Define fourth proportional and find the mean proportional between $15 p^{4} q r^{3}$ and $135 q^{5} r^{7}$.
(vi) State the Theorem of Componendo.

Q\#2: Solve the following Questions.
$2 * 6=12$
(i) Prove that $a: b=c: d$ if $\frac{2 a+9 b}{2 a-9 b}=\frac{2 c+9 d}{2 c-9 d}$.
(ii) Define Joint variation with relation.
(iii) If w varies inversely as the cube of u, and $w=5$ when $u=3$. Find w, when $u=6$.
(iv) If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, then show that $\frac{a}{b}=\sqrt{\frac{a^{2}+c^{2}}{b^{2}+d^{2}}}$.
(v) If $\frac{9 p q}{2 l m}=\frac{18 p}{5 m}$, then $5 \mathrm{q}=$ \qquad .
(vi) If $z \propto x y$ and $z=36$ when $\mathrm{x}=2, \mathrm{y}=3$, then find z .

Q\#3: Solve the following Questions. $2 * 6=12$
(i) Define Rational Fraction with example.
(ii) Resolve the fraction $\frac{x^{3}-x^{2}+x+1}{x^{2}+5}$ into proper fraction.
(iii) Resolve into partial fraction $\frac{x-5}{(x-1)(x+3)}$.
(iv) How we can write in partial fraction $\frac{x^{2}+7 x+11}{(x+2)^{2}(x+3)}$.
(v) Resolve $\frac{x^{2}}{(x+2)\left(x^{2}+4\right)}$ into partial fraction.
(vi) What are partial fractions? Whether $(x+3)^{2}=x^{2}+6 x+9$ is an identity.

- Long Questions.

Q\#1: (a) Two numbers are in the ratio $5: 8$. If 9 is added to each number, we get a new ratio $8: 11$. Find the numbers.
(b) Use theorem of componendo-divindendo find the value of $\frac{s-3 p}{s+3 p}+\frac{s+3 q}{s-3 q}$ if $\frac{6 p q}{s-3 q}$.

Q\#2: (a) If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}(a, b, c, d, f \neq 0)$ then show that $\frac{a c}{b d}+\frac{c e}{d f}+\frac{e a}{f b}=\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}+\frac{e^{2}}{f^{2}}$.
(b) In Hook's Law the force F applied to stretch a spring varies directly as the amount of elongation S and $F=32 \mathrm{lb}$ when $\mathrm{S}=1.6$ in. find (i) S when $\mathrm{F}=50 \mathrm{lb}$ (ii) F when $\mathrm{S}=0.8 \mathrm{in}$.
Q\#3: (a) Resolve into partial fractions $\frac{x^{4}}{x^{2}(x-1)}$.
(b) Resolve into partial fraction $\frac{x^{2}}{(x+1)\left(x^{2}+1\right)^{2}}$.

